crispr is coming to agriculture — with big implications for food, farmers, consumers and nature

— Written By
en Español / em Português
Español

El inglés es el idioma de control de esta página. En la medida en que haya algún conflicto entre la traducción al inglés y la traducción, el inglés prevalece.

Al hacer clic en el enlace de traducción se activa un servicio de traducción gratuito para convertir la página al español. Al igual que con cualquier traducción por Internet, la conversión no es sensible al contexto y puede que no traduzca el texto en su significado original. NC State Extension no garantiza la exactitud del texto traducido. Por favor, tenga en cuenta que algunas aplicaciones y/o servicios pueden no funcionar como se espera cuando se traducen.


Português

Inglês é o idioma de controle desta página. Na medida que haja algum conflito entre o texto original em Inglês e a tradução, o Inglês prevalece.

Ao clicar no link de tradução, um serviço gratuito de tradução será ativado para converter a página para o Português. Como em qualquer tradução pela internet, a conversão não é sensivel ao contexto e pode não ocorrer a tradução para o significado orginal. O serviço de Extensão da Carolina do Norte (NC State Extension) não garante a exatidão do texto traduzido. Por favor, observe que algumas funções ou serviços podem não funcionar como esperado após a tradução.


English

English is the controlling language of this page. To the extent there is any conflict between the English text and the translation, English controls.

Clicking on the translation link activates a free translation service to convert the page to Spanish. As with any Internet translation, the conversion is not context-sensitive and may not translate the text to its original meaning. NC State Extension does not guarantee the accuracy of the translated text. Please note that some applications and/or services may not function as expected when translated.

Collapse ▲

Gene editing offers dramatic advances in speed, scope and scale of genetic improvement. It also offers an opportunity for more nuanced GMO governance.

Maywa Montenegro @MaywaMontenegro
Food systems researcher, UC Berkeley

January 28, 2016 — Very few technologies truly merit the epithet “game changer” — but a new genetic engineering tool known as CRISPR-Cas9 is one of them. Since we first developed the ability to alter the genetic material inside a plant or animal in the 1970s, efforts to do so have required weeks, months or even years of molecular tinkering. With CRISPR (the technology’s shorthand name), precision and speed have soared.

“In the past, it was a student’s entire Ph.D. thesis to change one gene,” Bruce Conklin, a geneticist at the Gladstone Institutes in San Francisco, recently told The New York Times. “CRISPR just knocked that out of the park.”

The tool is also extremely versatile and seems to work in nearly every creature and cell type in which it has been tried. In the words of Jill Wildonger of the University of Wisconsin–Madison, “It really opens up the genome of virtually every organism that’s been sequenced to be edited and engineered.”

And that, when it comes to agriculture and the environment, is both its promise and its peril. CRISPR opens the door to all kinds of potential food production improvements. But improvements for whom? Farmers? Consumers? Agribusiness? Sustainable farming systems? Industrial agriculture? And who will decide?

If we want to make sure this powerful technology promotes just and sustainable food, we’ll need to accompany its development with a policy framework that reflects the nuances of its biology and its diverse applications — and that responds to the concerns of people who are affected when technologies migrate from lab to land.

Game-changing Tool

CRISPR as a gene-editing tool has a complex origin story, with researchers in California and Massachusetts waging a patent war over its innovation, while recent stories tell of independent discoveries at Vilnius University in Lithuania. For our purposes, I’ll focus on what happened here at the University of California, Berkeley where in 2011, Jennifer Doudna, a biochemist and molecular biologist, and Emmanuelle Charpentier, a microbiologist now at the Max Planck Institute for Infection Biology in Germany, grew intrigued by the way many bacteria respond to viral invasions. The microbes, it turns out, have an uncanny ability: They store DNA from invading viruses in a sort of genetic library called CRISPR. If the same virus should attack again, the bacteria can use CRISPR to mobilize an enzyme called Cas9 to cut up the intruder’s corresponding DNA.

Read more.